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FINDING READ DISTURBS ON
NON-VOLATILE MEMORIES

BACKGROUND

The following relates to the operation of re-programmable
non-volatile memory systems such as semiconductor flash
memory, and, more specifically, to the determination and
management of error on such memories.

Solid-state memory capable of nonvolatile storage of
charge, particularly in the form of EEPROM and flash
EEPROM packaged as a small form factor card, has recently
become the storage of choice in a variety of mobile and
handheld devices, notably information appliances and con-
sumer electronics products. Unlike RAM (random access
memory) that is also solid-state memory, flash memory is
non-volatile, and retaining its stored data even after power is
turned off. Also, unlike ROM (read only memory), flash
memory is rewritable similar to a disk storage device. In spite
of'the higher cost, flash memory is increasingly being used in
mass storage applications. Conventional mass storage, based
on rotating magnetic medium such as hard drives and floppy
disks, is unsuitable for the mobile and handheld environment.
This is because disk drives tend to be bulky, are prone to
mechanical failure and have high latency and high power
requirements. These undesirable attributes make disk-based
storage impractical in most mobile and portable applications.
On the other hand, flash memory, whether embedded, a solid
state drive (SSD) and in the form of a removable card is
ideally suited in the mobile and handheld environment
because of its small size, low power consumption, high speed
and high reliability features.

Flash EEPROM is similar to EEPROM (electrically eras-
able and programmable read-only memory) in that it is a
non-volatile memory that can be erased and have new data
written or “programmed” into their memory cells. Both uti-
lize a floating (unconnected) conductive gate, in a field effect
transistor structure, positioned over a channel region in a
semiconductor substrate, between source and drain regions.
A control gate is then provided over the floating gate. The
threshold voltage characteristic of the transistor is controlled
by the amount of charge that is retained on the floating gate.
That is, for a given level of charge on the floating gate, there
is a corresponding voltage (threshold) that must be applied to
the control gate before the transistor is turned “on” to permit
conduction between its source and drain regions. In particu-
lar, flash memory such as Flash EEPROM allows entire
blocks of memory cells to be erased at the same time.

The floating gate can hold a range of charges and therefore
can be programmed to any threshold voltage level within a
threshold voltage window. The size of the threshold voltage
window is delimited by the minimum and maximum thresh-
old levels of the device, which in turn correspond to the range
of'the charges that can be programmed onto the floating gate.
The threshold window generally depends on the memory
device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within
the window may, in principle, be used to designate a definite
memory state of the cell.

The transistor serving as a memory cell is typically pro-
grammed to a “programmed” state by one of two mecha-
nisms. In “hot electron injection,” a high voltage applied to
the drain accelerates electrons across the substrate channel
region. At the same time a high voltage applied to the control
gate pulls the hot electrons through a thin gate dielectric onto
the floating gate. In “tunneling injection,” a high voltage is
applied to the control gate relative to the substrate. In this way,
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electrons are pulled from the substrate to the intervening
floating gate. While the term “program” has been used his-
torically to describe writing to a memory by injecting elec-
trons to an initially erased charge storage unit of the memory
cell so as to alter the memory state, it has now been used
interchangeable with more common terms such as “write” or
“record.”

The memory device may be erased by a number of mecha-
nisms. For EEPROM, a memory cell is electrically erasable,
by applying a high voltage to the substrate relative to the
control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region
(i.e., Fowler-Nordheim tunneling.) Typically, the EEPROM
is erasable byte by byte. For flash EEPROM, the memory is
electrically erasable either all at once or one or more mini-
mum erasable blocks at a time, where a minimum erasable
block may consist of one or more sectors and each sector may
store 512 bytes or more of data.

The memory device typically comprises one or more
memory chips that may be mounted on a card or in a solid
state drive (SSD). Each memory chip comprises an array of
memory cells supported by peripheral circuits such as decod-
ers and erase, write and read circuits. The more sophisticated
memory devices also come with a controller that performs
intelligent and higher level memory operations and interfac-
ing.

There are many commercially successful non-volatile
solid-state memory devices being used today. These memory
devices may be flash EEPROM or may employ other types of
nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in U.S.
Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, and
5,661,053, 5,313,421 and 6,222,762. In particular, flash
memory devices with NAND string structures are described
in U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also non-
volatile memory devices are also manufactured from memory
cells with a dielectric layer for storing charge. Instead of the
conductive floating gate elements described earlier, a dielec-
tric layer is used. Such memory devices utilizing dielectric
storage element have been described by Fitan et al., “NROM:
A Novel Localized Trapping, 2-Bit Nonvolatile Memory
Cell,” IEEE Electron Device Letters, vol. 21, no. 11, Novem-
ber 2000, pp. 543-545. An ONO dielectric layer extends
across the channel between source and drain diffusions. The
charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is
localized in the dielectric layer adjacent to the source. For
example, U.S. Pat. No. 5,768,192 and U.S. Pat. No. 6,011,725
disclose a nonvolatile memory cell having a trapping dielec-
tric sandwiched between two silicon dioxide layers. Multi-
state data storage is implemented by separately reading the
binary states of the spatially separated charge storage regions
within the dielectric.

In order to improve read and program performance, mul-
tiple charge storage elements or memory transistors in an
array are read or programmed in parallel. Thus, a “page” of
memory elements are read or programmed together. In exist-
ing memory architectures, a row typically contains several
interleaved pages or it may constitute one page. All memory
elements of a page will be read or programmed together.

In flash memory systems, erase operation may take as
much as an order of magnitude longer than read and program
operations. Thus, it is desirable to have the erase block of
substantial size. In this way, the erase time is amortized over
a large aggregate of memory cells.

The nature of flash memory predicates that data must be
written to an erased memory location. If data of a certain
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logical address from a host is to be updated, one way is rewrite
the update data in the same physical memory location. That s,
the logical to physical address mapping is unchanged. How-
ever, this will mean the entire erase block contain that physi-
cal location will have to be first erased and then rewritten with
the updated data. This method of update is inefficient, as it
requires an entire erase block to be erased and rewritten,
especially if the data to be updated only occupies a small
portion of the erase block. It will also result in a higher
frequency of erase recycling of the memory block, which is
undesirable in view of the limited endurance of this type of
memory device.

Data communicated through external interfaces of host
systems, memory systems and other electronic systems are
addressed and mapped into the physical locations of a flash
memory system. Typically, addresses of data files generated
or received by the system are mapped into distinct ranges of
a continuous logical address space established for the system
in terms of logical blocks of data (hereinafter the “LLBA
interface”). The extent of the address space is typically suf-
ficient to cover the full range of addresses that the system is
capable of handling. In one example, magnetic disk storage
drives communicate with computers or other host systems
through such a logical address space. This address space has
an extent sufficient to address the entire data storage capacity
of the disk drive.

Flash memory systems are most commonly provided in the
form of a memory card or flash drive that is removably con-
nected with a variety of hosts such as a personal computer, a
camera or the like, but may also be embedded within such
host systems or be in the form of a solid state drive. When
writing data to the memory, the host typically assigns unique
logical addresses to sectors, clusters or other units of data
within a continuous virtual address space of the memory
system. Like a disk operating system (DOS), the host writes
data to, and reads data from, addresses within the logical
address space of the memory system. A controller within the
memory system translates logical addresses received from the
host into physical addresses within the memory array, where
the data are actually stored, and then keeps track of these
address translations. The data storage capacity of the memory
system is at least as large as the amount of data that is addres-
sable over the entire logical address space defined for the
memory system.

In current commercial flash memory systems, the size of
the erase unit has been increased to a block of enough
memory cells to store multiple sectors of data. Indeed, many
pages of data are stored in one block, and a page may store
multiple sectors of data. Further, two or more blocks are often
operated together as metablocks, and the pages of such blocks
logically linked together as metapages. A page or metapage of
data are written and read together, which can include many
sectors of data, thus increasing the parallelism of the opera-
tion. Along with such large capacity operating units the chal-
lenge is to operate them efficiently.

For ease of explanation, unless otherwise specified, it is
intended that the term “block™ as used herein refer to either
the block unit of erase or a multiple block “metablock,”
depending upon whether metablocks are being used in a
specific system. Similarly, reference to a “page” herein may
refer to a unit of programming within a single block or a
“metapage” within a metablock, depending upon the system
configuration.

In charge storing non-volatile memory devices, such as
those based on EEPROM or dielectric storage, the non-vola-
tility is non-perfect and the data value stored in an element
can be degraded by leakage over time. Operations in one part
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of the memory circuit can also affect data values in storage
elements not being directly acted upon. For example, capaci-
tive coupling between memory cells on adjacent word lines
can lead “read disturbs” or “write disturbs” when a neighbor-
ing word line is read or written. (Erase disturbs may also
occur, depending on the granularity at which cells are erased.)
To maintain the integrity of data in such memory systems, the
effects of such disturbs need to be considered.

SUMMARY OF THE INVENTION

According to a general aspect of the invention, a method is
presented for the operating of a non-volatile memory system
having one or more memory circuits and a controller circuit.
The memory circuits each include one or more arrays of
non-volatile memory cells formed along word lines and the
controller circuit manages the storage of data on the memory
circuit. For each of a first plurality of distinct divisions of the
one or more memory arrays the controller circuit maintains a
count of the number of times word lines of the corresponding
division is accessed for a read operation. In response to one of
the counts for a corresponding division reaching a first thresh-
old value, subdividing the corresponding division is subdi-
vide into a second plurality of distinct first subdivisions. For
each of the first subdivisions the controller circuit subse-
quently maintains a count of the number of times word lines
of the subdivision is accessed for read operations.

Various aspects, advantages, features and embodiments of
the present invention are included in the following description
of exemplary examples thereof, which description should be
taken in conjunction with the accompanying drawings. All
patents, patent applications, articles, other publications,
documents and things referenced herein are hereby incorpo-
rated herein by this reference in their entirety for all purposes.
To the extent of any inconsistency or conflict in the definition
oruse of terms between any of the incorporated publications,
documents or things and the present application, those of the
present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates schematically the main hardware compo-
nents of a memory system suitable for implementing the
present invention.

FIG. 2 illustrates schematically a non-volatile memory
cell.

FIG. 3 illustrates the relation between the source-drain
current [, and the control gate voltage V . for four different
charges Q1-Q4 that the floating gate may be selectively stor-
ing at any one time.

FIG. 4A illustrates schematically a string of memory cells
organized into an NAND string.

FIG. 4B illustrates an example of an NAND array 210 of
memory cells, constituted from NAND strings 50 such as that
shown in FIG. 4A.

FIG. 5 illustrates a page of memory cells, organized for
example in the NAND configuration, being sensed or pro-
grammed in parallel.

FIGS. 6(0)-6(2) illustrate an example of programming a
population of 4-state memory cells.

FIGS. 7A-7E illustrate the programming and reading of the
4-state memory encoded with a given 2-bit code.

FIG. 7F illustrates a foggy-fine programming for an 8-state
memory encoded with a given 3-bit code.

FIG. 8 illustrates the memory being managed by a memory
manager with is a software component that resides in the
controller.
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FIG. 9 illustrates the software modules of the back-end
system.

FIGS. 10A(1)-10A(iii) illustrate schematically the map-
ping between a logical group and a metablock. FIG. 10B
illustrates schematically the mapping between logical groups
and metablocks.

FIG. 11 is a schematic representation of the process for a
two level example.

FIGS. 12 and 13 provide further illustration of a hash tree
to track read zones.

DETAILED DESCRIPTION

Memory System

FIG. 1 to FIG. 10B provide example memory systems in
which the various aspects of the present invention may be
implemented or illustrated.

FIG. 1 illustrates schematically the main hardware compo-
nents of a memory system suitable for implementing the
present invention. The memory system 90 typically operates
with a host 80 through a host interface. The memory system is
typically in the form of a memory card, solid state drive
(SSD), or an embedded memory system. The memory system
90 includes a memory 200 whose operations are controlled by
a controller 100. The memory 200 comprises of one or more
array of non-volatile memory cells distributed over one or
more integrated circuit chip. The controller 100 includes an
interface 110, a processor 120, an optional coprocessor 121,
ROM 122 (read-only-memory), RAM 130 (random access
memory) and optionally programmable nonvolatile memory
124. The interface 110 has one component interfacing the
controller to a host and another component interfacing to the
memory 200. Firmware stored in nonvolatile ROM 122 and/
or the optional nonvolatile memory 124 provides codes for
the processor 120 to implement the functions of the controller
100. Error correction codes may be processed by the proces-
sor 120 or the optional coprocessor 121. In an alternative
embodiment, the controller 100 is implemented by a state
machine (not shown.) In yet another embodiment, the con-
troller 100 is implemented within the host.

Physical Memory Structure

With respect to the memory section 200, memory devices
include volatile memory devices, such as dynamic random
access memory (“DRAM?”) or static random access memory
(“SRAM”) devices, non-volatile memory devices, such as
resistive random access memory (“ReRAM”), electrically
erasable programmable read only memory (“EEPROM”),
flash memory (which can also be considered a subset of
EEPROM), ferroelectric random access memory (“FRAM”),
and magnetoresistive random access memory (“MRAM”),
and other semiconductor elements capable of storing infor-
mation. Furthermore, each type of memory device may have
different configurations. For example, flash memory devices
may be configured in a NAND or a NOR configuration.

The memory devices can be formed from passive and/or
active elements, in any combinations. By way of non-limiting
example, passive semiconductor memory elements include
ReRAM device elements, which in some embodiments
include a resistivity switching storage element, such as an
anti-fuse, phase change material, etc., and optionally a steer-
ing element, such as a diode, etc. Further by way of non-
limiting example, active semiconductor memory elements
include EEPROM and flash memory device elements, which
in some embodiments include elements containing a charge
storage region, such as a floating gate, conductive nanopar-
ticles or a charge storage dielectric material.
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Multiple memory elements may be configured so that they
are connected in series or such that each element is individu-
ally accessible. By way of non-limiting example, NAND
devices contain memory elements (e.g., devices containing a
charge storage region) connected in series. For example, a
NAND memory array may be configured so that the array is
composed of multiple strings of memory in which each string
is composed of multiple memory elements sharing a single bit
line and accessed as a group. In contrast, memory elements
may be configured so that each element is individually acces-
sible, e.g., a NOR memory array. One of skill in the art will
recognize that the NAND and NOR memory configurations
are exemplary, and memory elements may be otherwise con-
figured.

The semiconductor memory elements of a single device,
such as elements located within and/or over the same sub-
strate or in a single die, may be distributed in two or three
dimensions, such as a two dimensional array structure or a
three dimensional array structure.

In atwo dimensional memory structure, the semiconductor
memory elements are arranged in a single plane or single
memory device level. Typically, in a two dimensional
memory structure, memory elements are located in a plane
(e.g., in an x-z direction plane) which extends substantially
parallel to a major surface of a substrate that supports the
memory elements. The substrate may be a wafer over which
the layers of the memory elements are deposited and/or in
which memory elements are formed or it may be a carrier
substrate which is attached to the memory elements after they
are formed. As a non-limiting example, the substrate may
include a semiconductor such as silicon.

The memory elements may be arranged in the single
memory device level in an ordered array, such as in a plurality
of'rows and/or columns. However, the memory elements may
be arranged in non-regular or non-orthogonal configurations
asunderstood by one of skill in the art. The memory elements
may each have two or more electrodes or contact lines, such
as bit lines and word lines.

A three dimensional memory array is organized so that
memory elements occupy multiple planes or multiple device
levels, forming a structure in three dimensions (i.e., in the x,
y and z directions, where the y direction is substantially
perpendicular and the x and z directions are substantially
parallel to the major surface of the substrate).

As a non-limiting example, each plane in a three dimen-
sional memory array structure may be physically located in
two dimensions (one memory level) with multiple two
dimensional memory levels to form a three dimensional
memory array structure. As another non-limiting example, a
three dimensional memory array may be physically struc-
tured as multiple vertical columns (e.g., columns extending
substantially perpendicular to the major surface of the sub-
strate in the y direction) having multiple elements in each
column and therefore having elements spanning several ver-
tically stacked memory planes. The columns may be arranged
in a two dimensional configuration, e.g., in an x-z plane,
thereby resulting in a three dimensional arrangement of
memory elements. One of skill in the art will understand that
other configurations of memory elements in three dimensions
will also constitute a three dimensional memory array.

By way of non-limiting example, in a three dimensional
NAND memory array, the memory elements may be con-
nected together to form a NAND string within a single hori-
zontal (e.g., x-7) plane. Alternatively, the memory elements
may be connected together to extend through multiple hori-
zontal planes. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
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elements in a single memory level while other strings contain
memory elements which extend through multiple memory
levels. Three dimensional memory arrays may also be
designed in a NOR configuration and in a ReRAM configu-
ration.

A monolithic three dimensional memory array is one in
which multiple memory levels are formed above and/or
within a single substrate, such as a semiconductor wafer. In a
monolithic three dimensional array the layers of each level of
the array are formed on the layers of each underlying level of
the array. One of skill in the art will understand that layers of
adjacent levels of a monolithic three dimensional memory
array may be shared or have intervening layers between
memory levels. In contrast, two dimensional arrays may be
formed separately and then packaged together to form a non-
monolithic memory device. For example, non-monolithic
stacked memories have been constructed by forming memory
levels on separate substrates and adhering the memory levels
atop each other. The substrates may be thinned or removed
from the memory levels before bonding, but as the memory
levels are initially formed over separate substrates, such
memories are not monolithic three dimensional memory
arrays. Further, multiple two dimensional memory arrays or
three dimensional memory arrays (monolithic or non-mono-
lithic) may be formed separately and then packaged together
to form a stacked-chip memory device.

Associated circuitry is typically required for proper opera-
tion of the memory elements and for proper communication
with the memory elements. This associated circuitry may be
on the same substrate as the memory array and/or on a sepa-
rate substrate. As non-limiting examples, the memory devices
may have driver circuitry and control circuitry used in the
programming and reading of the memory elements.

One of skill in the art will recognize that this invention is
not limited to the two dimensional and three dimensional
exemplary structures described but cover all relevant memory
structures within the spirit and scope of the invention as
described herein and as understood by one of skill in the art.

FIG. 2 illustrates schematically a non-volatile memory
cell. The memory cell 10 can be implemented by a field-effect
transistor having a charge storage unit 20, such as a floating
gate or a dielectric layer. The memory cell 10 also includes a
source 14, a drain 16, and a control gate 30.

There are many commercially successful non-volatile
solid-state memory devices being used today. These memory
devices may employ different types of memory cells, each
type having one or more charge storage clement.

Typical non-volatile memory cells include EEPROM and
flash EEPROM. Examples of EEPROM cells and methods of
manufacturing them are given in U.S. Pat. No. 5,595,924.
Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in U.S.
Pat. Nos. 5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,
053, 5,313,421 and 6,222,762. In particular, examples of
memory devices with NAND cell structures are described in
U.S. Pat. Nos. 5,570,315, 5,903,495, 6,046,935. Also,
examples of memory devices utilizing dielectric storage ele-
ment have been described by Eitan et al., “NROM: A Novel
Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545, and in U.S. Pat. Nos. 5,768,192 and 6,011,725.

In practice, the memory state of a cell is usually read by
sensing the conduction current across the source and drain
electrodes of the cell when a reference voltage is applied to
the control gate. Thus, for each given charge on the floating
gate of a cell, a corresponding conduction current with
respect to a fixed reference control gate voltage may be
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detected. Similarly, the range of charge programmable onto
the floating gate defines a corresponding threshold voltage
window or a corresponding conduction current window.

Alternatively, instead of detecting the conduction current
among a partitioned current window, it is possible to set the
threshold voltage for a given memory state under test at the
control gate and detect if the conduction current is lower or
higher than a threshold current. In one implementation the
detection of the conduction current relative to a threshold
current is accomplished by examining the rate the conduction
current is discharging through the capacitance of the bit line.

FIG. 3 illustrates the relation between the source-drain
current I, and the control gate voltage V - for four different
charges Q1-Q4 that the floating gate may be selectively stor-
ing at any one time. The four solid I, versus V. curves
represent four possible charge levels that can be programmed
on a floating gate of a memory cell, respectively correspond-
ing to four possible memory states. As an example, the thresh-
old voltage window of a population of cells may range from
0.5V to 3.5V. Seven possible memory states “07, “17, “27,
“37, 47«57 “6”, respectively representing one erased and
six programmed states may be demarcated by partitioning the
threshold window into five regions in interval of 0.5V each.
For example, if a reference current, IREF of 2 pA is used as
shown, then the cell programmed with Q1 may be considered
to be in a memory state “1” since its curve intersects with [ -
in the region of the threshold window demarcated by.
VCG=0.5V and 1.0V. Similarly, Q4 is in a memory state “5”.

As can be seen from the description above, the more states
a memory cell is made to store, the more finely divided is its
threshold window. For example, a memory device may have
memory cells having a threshold window that ranges from
-1.5V to 5V. This provides a maximum width of 6.5V. If the
memory cell is to store 16 states, each state may occupy from
200 mV to 300 mV in the threshold window. This will require
higher precision in programming and reading operations in
order to be able to achieve the required resolution.

FIG. 4A illustrates schematically a string of memory cells
organized into an NAND string. An NAND string 50 com-
prises of a series of memory transistors M1, M2, ... Mn (e.g.,
n=4, 8, 16 or higher) daisy-chained by their sources and
drains. A pair of select transistors S1, S2 controls the memory
transistors chain’s connection to the external via the NAND
string’s source terminal 54 and drain terminal 56 respectively.
In a memory array, when the source select transistor S1 is
turned on, the source terminal is coupled to a source line (see
FIG. 4B). Similarly, when the drain select transistor S2 is
turned on, the drain terminal of the NAND string is coupled to
a bit line of the memory array. Each memory transistor 10 in
the chain acts as a memory cell. It has a charge storage
element 20 to store a given amount of charge so as to represent
an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As
will be seen in FIG. 4B, the control gates 30 of corresponding
memory transistors of arow of NAND string are all connected
to the same word line. Similarly, a control gate 32 of each of
the select transistors S1, S2 provides control access to the
NAND string via its source terminal 54 and drain terminal 56
respectively. Likewise, the control gates 32 of corresponding
select transistors of a row of NAND string are all connected to
the same select line.

When an addressed memory transistor 10 within an NAND
string is read or is verified during programming, its control
gate 30 is supplied with an appropriate voltage. At the same
time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of suffi-
cient voltage on their control gates. In this way, a conductive
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path is effective created from the source of the individual
memory transistor to the source terminal 54 of the NAND
string and likewise for the drain of the individual memory
transistor to the drain terminal 56 of the cell. Memory devices
with such NAND string structures are described in U.S. Pat.
Nos. 5,570,315, 5,903,495, 6,046,935.

FIG. 4B illustrates an example of an NAND array 210 of
memory cells, constituted from NAND strings 50 such as that
shown in FIG. 4A. Along each column of NAND strings, a bit
line such as bit line 36 is coupled to the drain terminal 56 of
each NAND string. Along each bank of NAND strings, a
source line such as source line 34 is couple to the source
terminals 54 of each NAND string. Also the control gates
along a row of memory cells in a bank of NAND strings are
connected to a word line such as word line 42. The control
gates along a row of select transistors in a bank of NAND
strings are connected to a select line such as select line 44. An
entire row of memory cells in a bank of NAND strings can be
addressed by appropriate voltages on the word lines and
select lines of the bank of NAND strings. When a memory
transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their
associated word lines so that the current flowing through the
string is essentially dependent upon the level of charge stored
in the cell being read.

FIG. 5 illustrates a page of memory cells, organized for
example in the NAND configuration, being sensed or pro-
grammed in parallel. FIG. 5 essentially shows a bank of
NAND strings 50 in the memory array 210 of FIG. 4B, where
the detail of each NAND string is shown explicitly as in FIG.
4A. A “page” such as the page 60, is a group of memory cells
enabled to be sensed or programmed in parallel. This is
accomplished by a corresponding page of sense amplifiers
212. The sensed results are latches in a corresponding set of
latches 214. Each sense amplifier can be coupled to a NAND
string via a bit line. The page is enabled by the control gates
of'the cells of the page connected in common to a word line 42
and each cell accessible by a sense amplifier accessible via a
bit line 36. As an example, when respectively sensing or
programming the page of cells 60, a sensing voltage or a
programming voltage is respectively applied to the common
word line WL3 together with appropriate voltages on the bit
lines.

Physical Organization of the Memory

One important difference between flash memory and of
type of memory is that a cell must be programmed from the
erased state. That is the floating gate must first be emptied of
charge. Programming then adds a desired amount of charge
back to the floating gate. It does not support removing a
portion of the charge from the floating to go from a more
programmed state to a lesser one. This means that update data
cannot overwrite existing one and must be written to a previ-
ous unwritten location.

Furthermore erasing is to empty all the charges from the
floating gate and generally takes appreciably time. For that
reason, it will be cumbersome and very slow to erase cell by
cell or even page by page. In practice, the array of memory
cells is divided into a large number ot blocks of memory cells.
As is common for flash EEPROM systems, the block is the
unit of erase. That is, each block contains the minimum num-
ber of memory cells that are erased together. While aggregat-
ing a large number of cells in a block to be erased in parallel
will improve erase performance, a large size block also entails
dealing with a larger number of update and obsolete data. Just
before the block is erased, a garbage collection is required to
salvage the non-obsolete data in the block.
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Each block is typically divided into a number of pages. A
page is a unit of programming or reading. In one embodiment,
the individual pages may be divided into segments and the
segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or
more pages of data are typically stored in one row of memory
cells. A page can store one or more sectors. A sector includes
user data and overhead data. Multiple blocks and pages dis-
tributed across multiple arrays can also be operated together
as metablocks and metapages. If they are distributed over
multiple chips, they can be operated together as megablocks
and megapage.

Examples of Multi-level Cell (“MLC”) Memory Partitioning

A nonvolatile memory in which the memory cells each
stores multiple bits of data has already been described in
connection with FIG. 3. A particular example is a memory
formed from an array of field-effect transistors, each having a
charge storage layer between its channel region and its con-
trol gate. The charge storage layer or unit can store a range of
charges, giving rise to a range of threshold voltages for each
field-effect transistor. The range of possible threshold volt-
ages spans a threshold window. When the threshold window
is partitioned into multiple sub-ranges or zones of threshold
voltages, each resolvable zone is used to represent a different
memory states for amemory cell. The multiple memory states
can be coded by one or more binary bits. For example, a
memory cell partitioned into four zones can support four
states which can be coded as 2-bit data. Similarly, a memory
cell partitioned into eight zones can support eight memory
states which can be coded as 3-bit data, etc.

All-bit, Full-Sequence ML.C Programming

FIGS. 6(0)-6(2) illustrate an example of programming a
population of 4-state memory cells. FIG. 6(0) illustrates the
population of memory cells programmable into four distinct
distributions of threshold voltages respectively representing
memory states “07, “17, “2” and “3”. FIG. 6(1) illustrates the
initial distribution of “erased” threshold voltages for an
erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been pro-
grammed. Essentially, a cell initially has an “erased” thresh-
old voltage and programming will move it to a higher value
into one of the three zones demarcated by verify levels vV,
vV, and vV;. In this way, each memory cell can be pro-
grammed to one of the three programmed state “1”, “2” and
“3” or remain un-programmed in the “erased” state. As the
memory gets more programming, the initial distribution of
the “erased” state as shown in FIG. 6(1) will become narrower
and the erased state is represented by the “0” state.

A 2-bit code having a lower bit and an upper bit can be used
to represent each of the four memory states. For example, the
“07, “17, “2” and “3” states are respectively represented by
“117, 017, “00” and “10”. The 2-bit data may be read from
the memory by sensing in “full-sequence” mode where the
two bits are sensed together by sensing relative to the read
demarcation threshold values rV,, rV, and rV; in three sub-
passes respectively.

Bit-by-Bit MLLC Programming and Reading

FIGS. 7A-7E illustrate the programming and reading of the
4-state memory encoded with a given 2-bit code. FIG. 7A
illustrates threshold voltage distributions of the 4-state
memory array when each memory cell stores two bits of data
using the 2-bit code. Such a 2-bit code has been disclosed in
U.S. patent application Ser. No. 10/830,824 filed Apr. 24,
2004 by Li et al., entitled “NON-VOLATILE MEMORY
AND CONTROL WITH IMPROVED PARTIAL PAGE
PROGRAM CAPABILITY”.
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FIG. 7B illustrates the lower page programming (lower bit)
in a 2-pass programming scheme using the 2-bit code. The
fault-tolerant LM New code essentially avoids any upper
page programming to transit through any intermediate states.
Thus, the first pass lower page programming has the logical
state (upper bit, lower bit)=(1, 1) transits to some intermediate
state (X, 0) as represented by programming the “unpro-
grammed” memory state “0” to the “intermediate” state des-
ignated by (x, 0) with a programmed threshold voltage greater
than D, but less than D.

FIG. 7C illustrates the upper page programming (upper bit)
in the 2-pass programming scheme using the 2-bitcode. In the
second pass of programming the upper page bit to “0”, if the
lower page bit is at “1”, the logical state (1, 1) transits to (0, 1)
as represented by programming the “unprogrammed”
memory state “0” to “1”. If the lower page bit is at “0”, the
logical state (0, 0) is obtained by programming from the
“intermediate” state to “3”. Similarly, if the upper page is to
remain at “1”, while the lower page has been programmed to
“07, it will require a transition from the “intermediate” state to
(1, 0) as represented by programming the “intermediate” state
to “2”.

FIG. 7D illustrates the read operation that is required to
discern the lower bit of the 4-state memory encoded with the
2-bit code. A readB operation is first performed to determine
if the LM flag can be read. If so, the upper page has been
programmed and the readB operation will yield the lower
page data correctly. On the other hand, if the upper page has
not yet been programmed, the lower page data will be read by
a readA operation.

FIG. 7E illustrates the read operation that is required to
discern the upper bit of the 4-state memory encoded with the
2-bit code. As is clear from the figure, the upper page read will
require a 3-pass read of read A, readB and readC, respectively
relative to the demarcation threshold voltages D ,, Dzand D...

In the bit-by-bit scheme for a 2-bit memory, a physical
page of memory cells will store two logical data pages, a
lower data page corresponding to the lower bit and an upper
data page corresponding to the upper bit.

Foggy-Fine Programming

Another variation on multi-state programming employs a
foggy-fine algorithm, as is illustrated in FIG. 7F for a 3-bit
memory example. As shown there, this another multi-phase
programming operation. A first programming operation is
performed as shown in the top line, followed the foggy pro-
gramming stage. The foggy phase is a full 3-bit programming
operation from the first phase using all eight of the final states.
At the end of the foggy, though, the data in these states is not
yet fully resolved into well-defined distributions for each of
the 8 states (hence, the “foggy” name) and is not readily
extractable.

As each cell is, however, programmed to near its eventual
target state, the sort of neighboring cell to cell couplings, or
“Yupin” eftect, described in U.S. Pat. No. 6,870,768 are pre-
senting most of their effect. Because of this, when the fine
program phase (shown on the bottom line) is executed, these
couplings have largely been factored in to this final phase so
the cell distributions are more accurately resolved to their
target ranges. More detail on these subjects is given in U.S.
Pat. Nos. 6,870,768 and 6,657,891 and in the US patent
application entitled “Atomic Program Sequence and Write
Abort Detection” by Gorobets et al. having attorney applica-
tion Ser. No. 12/642,740, which was filed Dec. 18, 2009, and
which presents a “diagonal” first-foggy-fine method.

Binary and ML.C Memory Partitioning

FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also

referred to as “D2”’) memory. As can be seen, a D2 memory
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has its threshold range or window partitioned into 4 regions,
designating 4 states. Similarly, in D3, each cell stores 3 bits
(low, middle and upper bits) and there are 8 regions. In D4,
there are 4 bits and 16 regions, etc. As the memory’s finite
threshold window is partitioned into more regions, the reso-
Iution and for programming and reading will necessarily
become finer. Two issues arise as the memory cell is config-
ured to store more bits.

First, programming or reading will be slower when the
threshold of a cell must be more accurately programmed or
read. In fact in practice the sensing time (needed in program-
ming and reading) tends to increase as the square of the
number of partitioning levels.

Secondly, flash memory has an endurance problem as it
ages with use. When a cell is repeatedly programmed and
erased, charges is shuttled in and out of the floating gate 20
(see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modify
the threshold of the cell. In fact over use, the threshold win-
dow will progressively narrow. Thus, MLLC memory gener-
ally is designed with tradeotfs between capacity, performance
and reliability.

Conversely, it will be seen for a binary memory, the memo-
ry’s threshold window is only partitioned into two regions.
This will allow a maximum margin of errors. Thus, binary
partitioning while diminished in storage capacity will provide
maximum performance and reliability.

The multi-pass, bit-by-bit programming and reading tech-
nique described in connection with FIG. 7 provides a smooth
transition between MLC and binary partitioning. In this case,
if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach
does not fully optimize the range of the threshold window as
in the case of a single-level cell (“SLC”) memory, it has the
advantage of using the same demarcation or sensing level as
in the operations of the lower bit of the ML.C memory. As will
be described later, this approach allows a MLLC memory to be
“expropriated” for use as a binary memory, or vice versa.
How it should be understood that MLLC memory tends to have
more stringent specification for usage.

Binary Memory and Partial Page Programming

The charge programmed into the charge storage element of
one memory cell produces an electric field that perturbs the
electric field of a neighboring memory cell. This will affect
the characteristics of the neighboring memory cell which
essentially is a field-effect transistor with a charge storage
element. In particular, when sensed the memory cell will
appear to have a higher threshold level (or more programmed)
than when it is less perturbed.

In general, if a memory cell is program-verified under a
first field environment and later is read again under a different
field environment due to neighboring cells subsequently
being programmed with different charges, the read accuracy
may be affected due to coupling between neighboring float-
ing gates in what is referred to as the “Yupin Effect”. With
ever higher integration in semiconductor memories, the per-
turbation of the electric field due to the stored charges
between memory cells (Yupin effect) becomes increasing
appreciable as the inter-cellular spacing shrinks.

The Bit-by-Bit ML.C Programming technique described in
connection with FIG. 7 above is designed to minimize pro-
gram disturb from cells along the same word line. As can be
seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the
threshold window. The effect of the first pass is overtaken by
the final pass. In the final pass, the thresholds are only moved
a quarter of the way. In other words, for D2, the charge
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difference among neighboring cells is limited to a quarter of
its maximum. For D3, with three passes, the final pass will
limit the charge difference to one-eighth of its maximum.

However, the bit-by-bit multi-pass programming tech-
nique will be compromised by partial-page programming. A
page is a group of memory cells, typically along a row or word
line, that is programmed together as a unit. It is possible to
program non overlapping portions of a page individually over
multiple programming passes. However, owning to not all the
cells of the page are programmed in a final pass together, it
could create large difference in charges programmed among
the cells after the page is done. Thus partial-page program-
ming would result in more program disturb and would require
a larger margin for sensing accuracy.

In the case the memory is configured as binary memory, the
margin of operation is wider than that of MLC. In the pre-
ferred embodiment, the binary memory is configured to sup-
port partial-page programming in which non-overlapping
portions of a page may be programmed individually in one of
the multiple programming passes on the page. The program-
ming and reading performance can be improved by operating
with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte
sector), its usage will be inefficient. Operating with finer
granularity than a page allows more efficient usage of such a
page.

The example given has been between binary versus MLC.
It should be understood that in general the same principles
apply between a first memory with a first number of levels and
a second memory with a second number of levels more than
the first memory.

Logical and Physical Block Structures

FIG. 8 illustrates the memory being managed by a memory
manager with is a software component that resides in the
controller. The memory 200 is organized into blocks, each
block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even
large units of erase formed by an aggregate of blocks into
“metablocks” and also “megablocks”. For convenience the
description will refer to a unit of erase as a metablock
although it will be understood that some systems operate with
even larger unit of erase such as a “megablock” formed by an
aggregate of metablocks.

The host 80 accesses the memory 200 when running an
application under a file system or operating system. Typically,
the host system addresses data in units of logical sectors
where, for example, each sector may contain 512 bytes of
data. Also, it is usual for the host to read or write to the
memory system in unit of logical clusters, each consisting of
one or more logical sectors. In some host systems, an optional
host-side memory manager may exist to perform lower level
memory management at the host. In most cases during read or
write operations, the host 80 essentially issues a command to
the memory system 90 to read or write a segment containing
a string of logical sectors of data with contiguous addresses.

A memory-side memory manager 300 is implemented in
the controller 100 of the memory system 90 to manage the
storage and retrieval of the data ofhost logical sectors among
metablocks of the flash memory 200. The memory manager
comprises a front-end system 310 and a back-end system 320.
The front-end system 310 includes a host interface 312. The
back-end system 320 includes a number of software modules
for managing erase, read and write operations of the meta-
blocks. The memory manager also maintains system control
data and directory data associated with its operations among
the flash memory 200 and the controller RAM 130.
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FIG. 9 illustrates the software modules of the back-end
system. The Back-End System mainly comprises two func-
tional modules: a Media Management Layer 330 and a Data-
flow and Sequencing Layer 340.

The media management layer 330 is responsible for the
organization of logical data storage within a flash memory
meta-block structure. More details will be provided later in
the section on “Media management Layer”.

The dataflow and sequencing layer 340 is responsible for
the sequencing and transfer of sectors of data between a
front-end system and a flash memory. This layer includes a
command sequencer 342, a low-level sequencer 344 and a
flash Control layer 346. More details will be provided later in
the section on “Low Level System Spec”.

The memory manager 300 is preferably implemented in
the controller 100. It translates logical addresses received
from the host into physical addresses within the memory
array, where the data are actually stored, and then keeps track
of these address translations.

FIGS. 10A(1)-10A(iii) illustrate schematically the map-
ping between alogical group and a metablock. The metablock
of the physical memory has N physical sectors for storing N
logical sectors of data of a logical group. FIG. 10A(i) shows
the data from a logical group LG,, where the logical sectors
are in contiguous logical order O, 1, . . ., N=-1. FIG. 10A(ii)
shows the same data being stored in the metablock in the same
logical order. The metablock when stored in this manner is
said to be “sequential.” In general, the metablock may have
data stored in a different order, in which case the metablock is
said to be “non-sequential” or “chaotic.”

There may be an offset between the lowest address of a
logical group and the lowest address of the metablock to
which it is mapped. In this case, logical sector address wraps
round as a loop from bottom back to top of the logical group
within the metablock. For example, in FIG. 10A(iii), the
metablock stores in its first location beginning with the data of
logical sector k. When the last logical sector N-1 is reached,
it wraps around to sector 0 and finally storing data associated
with logical sector k-1 in its last physical sector. In the
preferred embodiment, a page tag is used to identify any
offset, such as identifying the starting logical sector address
of'the data stored in the first physical sector of the metablock.
Two blocks will be considered to have their logical sectors
stored in similar order when they only differ by a page tag.

FIG. 10B illustrates schematically the mapping between
logical groups and metablocks. Each logical group 380 is
mapped to a unique metablock 370, except for a small number
of logical groups in which data is currently being updated.
After a logical group has been updated, it may be mapped to
a different metablock. The mapping information is main-
tained in a set of logical to physical directories, which will be
described in more detail later.

Finding Read Disturbs

Due to capacitive coupling between memory cells on adja-
cent word lines, voltage levels used while accessing data on
one word line can affect data quality on the neighboring word
line, non-accessed word. This can occur in both write opera-
tions, leading to “write disturbs”, and in read operation, lead-
ing to “read disturbs”. There are a number of techniques are
known for dealing with program disturbs, including altering
voltage ramp rates (see, for example, U.S. Pat. No. 6,717,
851), altering the order in which word lines are written (see,
for example, U.S. Pat. No. 7,986,554), using foggy-fine algo-
rithms (discussed above), or various post-write read verifica-
tions (see, for example, US patents and patent publication
numbers U.S. Pat. No. 8,634,240 and 2013-0028021). This
section considers techniques for determining word lines more
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likely to be suffering from a read disturbs, where reads to a
localized zone of the memory can cause undetected distur-
bances in neighboring word lines within a block.

A number of approaches can be used to address this prob-
lem. One is to use block read counters in RAM on the con-
troller, which can give a fair approximation when a block may
become disturbed by reads. This solution consumes a pretty
fair amount of memory space (at least 4 bytes per block times
the number of blocks in the system). In an SSD with 256K
blocks, this can equate to about a 1 MB of space to track
simple read counters, which is a significant amount of rela-
tively expensive controller RAM. Even when using this
amount of RAM, a major problem with block counters is that
they do not provide the granularity to know which word lines
caused the problem and that the threshold is set extremely
low. When the threshold for the block trips, the whole block is
scrubbed (i.e. copied), which leads to premature cycling.
With the scheme presented here, the system can detect spe-
cifically which word line was read, moves that data and neigh-
bor data, but can leave the rest of the block intact.

Another approach is a read patrol (see US patents and
patent publication numbers U.S. Pat. Nos. 7,012,835; 7,477,
547;,7,616,484; and 2009/0172258), either randomly or seri-
ally sampling written blocks with valid data to look for read
disturbs. This method uses extra background power and may
not find hot zones in time (as this is dependent upon the
amount of background time) or at all. The read patrol takes a
significant amount of time to get coverage of the full device.
Also, the read patrol itself contributes to the read disturb, the
problem it is trying to solve. Reading neighboring word lines
periodically for host reads can help to detect potential read
disturbs, but adds additional power and latency to host opera-
tions. Additionally, reading neighbor word lines is subject to
noise error and becomes cumber in trying to detect and iden-
tify hot read data addresses.

The exemplary embodiments presented here use a hash tree
to track read zones and find hot read areas of the flash. The
hash tree uses a small footprint of memory area and can
provide more accuracy than a simple block counter, depend-
ing on the tree’s design level. The hash tree can help isolate
regions of the flash that the host is reading. Depending on the
embodiment, the tree can be designed to be tall or short, with
more branches or more singular, the tree can be symmetric or
asymmetrical.

Initially, when the tree starts, only one level is used, level 0.
Level 0 can be a single set of N 4-byte counters. As a zone is
hit by reads, the read counter is incremented. When the zone
reaches a certain threshold, the zone is elevated to level 1.
When the zone is elevated to level 1, its space is broken into
further zones in level 1. This provides more accuracy for
detecting the hot space of a zone. A pointer can be used to
indicate which zones have been elevated. After a zone is
elevated, its root can still increment to help keep track of its
read count. The threshold to elevate can be modified as the
tree fills up.

The elevation of the zones can continue up the tree, where
each level hash can have one or more children nodes. Because
space is limited in an embedded device, when a difterent zone
in a lower node becomes hotter, an eviction should take place
at some point so that the tree cannot grow without bounds.
When an eviction happens, the zone is collapsed down and a
new zone is elevated in the tree for more analysis. During an
eviction the zone read count is still preserved, but the tree
information is lost.

The number of levels will depend on the implementation.
As zones reach the tree tips, and reaches the highest threshold,
the zone can placed on a read patrol list for further evaluation
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forread scrub. More detail on scrub, refresh, and patrol opera-
tions can be found in US patents and patent publication num-
bers U.S. Pat. Nos. 7,012,835; 7,477,547, 7,616,484; and
2009/0172258.

To maintain the tree structure and level counts, periodically
the tree and its parameters can be saved to the non-volatile
memory on the memory section. Then on power up the table
can be loaded from the non-volatile memory back to control-
ler RAM.

To avoid counter saturation, the tree can be pruned back by
some amount periodically. The pruning will occur with block
erases, hot read data migration, and, alternatively, when cer-
tain hot count (number of erases) milestones are reached. This
process can be referred to as a “tree leveling”, where when the
program/erase counter reaches a certain level, the whole tree
can be pared back. If the device is evenly wear leveled, then
all the blocks in the system shall vary in hot count by no more
than percentage variation. (More detail on where leveling is
given in US patents and patent publication numbers U.S. Pat.
Nos. 7,353,325, 7,441,067, 7,120,729; and 2010-0174845.)
Using this knowledge, certain hot count checkpoints can be
established to prune down the tree. The pruning of the tree can
be a global reset, or pairing the counters by a percentage, or
pairing the tree by a fixed amount. The tree can be pruned
whenever the stem threshold is crossed (causing a block,
word line, logical group, or other structure corresponding to
that level’s zone to reach the scrub list).

When an area is detected hot, the hot area (and its neigh-
boring word lines) can either be refreshed to a new block
(leaving the rest of the block intact), or the whole block can be
scrubbed. The hot data can either be refreshed to a separate
zone, so as to not trip the tree up as the reads continue, or it can
just migrate naturally. If migrating naturally then nothing
special needs to be done in the event that a hot read zone
becomes cold. The separate zone for hot data can be managed
in various ways to reduce the resultant amount read disturbs.
For example, the data can be stored in binary format, use
different margins, be stored with one or more unused word
lines between the word lines storing data, and so on. For any
of'these arrangements, the detection of potential read disturbs
can lead to the eviction of a partial block of data, including the
immediate neighbor word lines, or recycling of the entire
block with possible special handling of the hot read data. If
the hot read data cools later, it can rejoin the regular pool.

In one set of embodiments, after a zone is detected hot, and
the neighbors are checked and scrubbed, the hot data can be
tracked logically using a separate table. Tracking this data
separately can provide the advantage of detecting when the
data becomes cold, and can help from having the same data
trigger branching in the tree after scrubbing. The hot data
would still need to be tracked for future read disturbs.

Ifthe tree is used to track the device physically and an erase
occurs within a zone, the read counters can be rolled back by
a defined algorithm amount to account for the fact that a
portion of that zone has been refreshed. Depending on the
embodiment and the level, a branch of the tree can represent
a logical group (4 KB, for example), a die’s WL, a series of
WLs, or a series of blocks. As erases occur on units of blocks,
the branch that represents that block would need to collapse
down to the block level if necessary. At the time of collapse,
anew branch can be elevated or the elevation can occur on the
next read to that set.

As read disturbs are the result of operations on physically
adjacent word lines, the exemplary embodiments are based
on tracking physical addresses of the zones at each level. An
alternative embodiment is to have the tree track the addresses
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logically instead of physically, with any writes to a zone/
branch should have a decrementing effect on the counters.

Some of these concepts are illustrated with respect FIGS.
11-13. FIG. 11 is a schematic representation of the process for
a two level example. Generally, level O zones can be die,
portion of a die, number of blocks, and so on down to a group
of word lines. The zones at the highest level (level 1 in this
example) can be as small as individual word lines. (In this
discussion, “zone” is not meant, or at least not necessarily
meant, to correspond to the sort of zone structure described in
U.S. Pat. No. 6,901,498, for example, but is being used more
generally for physical memory regions such as die, block,
word line and soon.) In the example of FIG. 11 the level 0
zone is taken as some number of blocks and the level 1 zone
is taken as some fraction of the blocks of the level O zone.

At lower part of FIG. 11 are the level O counters 501, each
of'the read counters corresponding to one or zones 0 to N. For
example, counter 503 tracks the number of times the blocks
505 of zone O are accessed for a read. In this example, Zone
0’s blocks are split into level 1 zones for further analysis,
there can be several level 1 counters. As shown to the left,
when a counter reaches a threshold for the level the corre-
sponding zone’s block are moved up a level for further evalu-
ation. When a zone moves up in levels, the count can either be
evenly distributed to its subparts, reset to 0, or a separate
master zone counter maintained.

Atlevel 1, the elevated level 0 zone is sub-divided into a set
of level 1 zones with corresponding counters 511: for
example, Zone A of blocks 515 is monitored using counter
513. The counters of level 1 are checked against the level’s
threshold and moved up as needed to the level or on a list for
read scan, where, depending on the implementation, the sys-
tem can repeat the narrowing process to get down to a group
of'blocks, a group of WLs, or even to the smallest read/write
granularity as based on the system’s ECC unit (referred to
variously as a flash management unit, FMU, a codeword, or
ECC page). When a block is erased, and the block is at a
higher level (such as level 1 in FIG. 11), the zone can be
shifted down a level. The collapsing of elements can be based
on the comparison of other counters, block erasures, or as part
of a tree levelling procedure. A collapsing of one branch can
cause division in another branch. The root nodes can be
evaluated on a tree collapse, or if no free zone counters are
available, then the whole tree could be re-evaluated on any
collapse, where priority can be given to the zone with the
highest counter or the most recent counter.

From level 1, a zone Zone X with counter 521 is moved to
the candidate list for read scan to check for rad disturb effects.
If this zone is narrowed down to a word line or series of word
lines, these can be placed on a “burning zone” list for fre-
quently accessed zones.

FIG. 12 looks the situation in more detail. At bottom is the
set of zone counters for Level 0, where Zones 0-N can repre-
sent the entire plane, die, chip, or device capacity. Based on
the count values, as these reach the corresponding thresholds
the counters of the set can be partitioned into equal sized
zones for level 1. FIG. 12 shows the case when Q zones (two
of which are shown) from level 0 have been elevated to level
1, each subdivided into X zones with a corresponding counter.
For example, Zone 0 from level 0 is here broken into multiple
smaller zones Zone A to Zone A+X atlevel 1. The counters for
the zones of level 1 are similarly used to determine when to
move a zone oflevel 1 to level. For example, Zone A+1 is here
broken into multiple (X again in this example) smaller zones
in level 2. If, say, Zone ‘E+1’ then has a high count value, it
can then be sent to the read scan to check for read disturb
effects.
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FIG. 13 is similar to FIG. 12, but for a slightly different
scenario. FIG. 13 shows two of the level 0 zones (zones 0 and
N) each subdivided into a set of level 1 zones, each of which
then has two zones (zones A+1 and A+X, zones B and B+1)
further splitinto sets oflevel 2 zones. A symmetrical hash tree
may be easier for firmware/hardware to maintain, although
asymmetrical trees can be used as well.

For any of the embodiments, the techniques of this section
can help to determine locations of possible read disturbs with
fewer reads to the device and less use of power. Hot read
zones can be found accurately with a smaller memory foot-
print than in other counter solutions. This can help to avoid
un-necessary scrubbing of data and blind background patrol-
ling.

Conclusion

The foregoing detailed description of the invention has
been presented for purposes of illustration and description. It
is not intended to be exhaustive or to limit the invention to the
precise form disclosed. Many modifications and variations
are possible in light of the above teaching. The described
embodiments were chosen in order to best explain the prin-
ciples of the invention and its practical application, to thereby
enable others skilled in the art to best utilize the invention in
various embodiments and with various modifications as are
suited to the particular use contemplated. It is intended that
the scope of the invention be defined by the claims appended
hereto.

It is claimed:

1. A method of operating a non-volatile memory system
having one or more memory circuits and a controller circuit,
the memory circuits each including one or more arrays of
non-volatile memory cells formed along word lines and the
controller circuit managing the storage of data on the memory
circuit, the method comprising:

for each of a first plurality of distinct divisions of the one or

more memory arrays maintaining by the controller cir-
cuit a count of the number of times word lines of the
corresponding division are accessed for a read opera-
tion;

in response to one of the counts for a corresponding divi-

sion reaching a first threshold value, subdividing the
corresponding division into a second plurality of distinct
first subdivisions; and

subsequently maintaining by the controller circuit for each

of the first subdivisions a count of the number of times
word lines of the subdivision are accessed for read
operations.
2. The method of claim 1, further comprising:
in response to one of the counts for a corresponding sub-
division reaching a second threshold value, further sub-
dividing the corresponding subdivision into a third plu-
rality of distinct first sub-subdivisions; and

subsequently maintaining by the controller circuit for each
of the first sub-subdivisions a count of the number of
times word lines of the sub-subdivision are accessed for
read operations.

3. The method of claim 1, wherein the first plurality of
distinct divisions were previously formed by subdividing one
of a plurality of structures formed of such divisions in
response to a number of accesses for read operations.

4. The method of claim 1, further comprising:

in response to one of the counts for a corresponding sub-

division reaching a second threshold value, placing the
corresponding one of the subdivisions a list of subdivi-
sions on which to perform a data scrub operation.
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5. The method of claim 1, further comprising:

in response to one of the counts for a corresponding sub-
divisionreaching a second threshold value, performing a
scrub operation on the corresponding one of the subdi-
visions.

6. The method of claim 1, further comprising:

in response to one of the counts for a corresponding sub-

division reaching a second threshold value, relocating
the data from the corresponding one of the subdivisions
to a different location on the memory circuits.

7. The method of claim 6, wherein the different location on
the memory circuits is reserved by the controller circuit for
frequently accessed data.

8. The method of claim 7, wherein the location reserved by
the controller circuit for frequently accessed data is managed
differently by the controller circuit than other portions of the
memory circuits.

9. The method of claim 8, wherein data is stored in a binary
format in the location reserved for frequently accessed data.

10. The method of claim 8, wherein data is stored on
non-adjacent word lines in the location reserved for fre-
quently accessed data.

11. The method of claim 7, wherein the relocated data is
subsequently evicted from the location reserved for fre-
quently accessed data in response to determining that the
frequency of being accessed for the relocated data is
decreased.

12. The method of claim 6, wherein the data relocated
includes one or more frequently accessed word lines and one
or more word lines adjacent the frequently accessed word
lines.

13. The method of claim 6, wherein the relocating the data
from the corresponding one of the subdivisions includes the
relocation of an entire erase block.

14. The method of claim 1, wherein the controller circuit
includes a volatile memory in which are maintained the val-
ues of the counts.

15. The method of claim 14, wherein the controller circuit
periodically saves the count values to non-volatile memory on
the memory circuits.

16. The method of claim 15, wherein on power up, the
controller circuit loads the count values saved in non-volatile
memory into the volatile memory on the controller circuit.
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17. The method of claim 1, wherein the memory circuits
are flash memory circuit and the divisions correspond to a
plurality of erase blocks.

18. The method of claim 1, wherein the memory circuits
are flash memory circuit and the subdivisions correspondto a
plurality of erase blocks.

19. The method of claim 1, wherein the memory circuits
are flash memory circuit and the divisions correspond to an
erase blocks.

20. The method of claim 1, further comprising:

subsequently discontinuing of the maintaining by the con-

troller circuit for one or more of the first subdivisions the
count of the number of times word lines of the subdivi-
sion are accessed for read operations.

21. The method of claim 20, wherein the discontinuing is in
response to the value of the counts being discontinued relative
to others of the counts of the first subdivision.

22. The method of claim 20, wherein the discontinuing is in
response to the corresponding division being erased.

23. The method of claim 20, wherein the discontinuing is in
response to the number of counts being maintained.

24. The method of claim 1, wherein the memory circuits
are flash memory circuit and the subdivisions correspond to
an erase blocks.

25. The method of claim 1, wherein the divisions corre-
spond to a set of word lines.

26. The method of claim 1, wherein the subdivisions cor-
respond to a set of word lines.

27. The method of claim 1, wherein the memory circuits
include a plurality of dies and the divisions correspond to a
die.

28. The method of claim 1, wherein the arrays are of a
NAND-type of architecture.

29. The memory of claim 1, wherein the arrays are of an
architecture having a three dimensional memory array that is
monolithically formed as a plurality of physical levels of
memory cells, a physical level having an active layer disposed
above a silicon substrate, the memory cells in communication
with operating circuitry.
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